df <- read_csv(
'female.csv',
) |> rename(percent_female = data, year = period)
df$percent_male = 100 - df$percent_female
# pivot longer extract percent from percent_male and percent_female
df <- df |> pivot_longer(
cols = starts_with("percent"),
names_to = "gender",
values_to = "percent",
names_prefix = "percent_",
)
only_female <- df |> filter(gender == "female")Day 1: Fractions
df |> ggplot(aes(year, percent, group = fct_relevel(gender, c("male","female") ) )) +
geom_area(aes(fill=gender), position = "stack", alpha = 0.5) +
geom_line(data=only_female)+
scale_fill_brewer(palette = "Set1") +
scale_y_continuous(expand = c(0, 0)) +
scale_x_continuous(expand = c(0, 0)) +
labs(title="Percentage of women in Ukrainian parliament", subtitle="1990-2020", y=NULL)
data: https://data.gov.ua/dataset/ffa2876c-7605-4180-a765-4310a0d37cb1